Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis.

Identifieur interne : 003F85 ( Main/Exploration ); précédent : 003F84; suivant : 003F86

Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis.

Auteurs : Shanfa Lu [États-Unis] ; Ying-Hsuan Sun ; Rui Shi ; Catherine Clark ; Laigeng Li ; Vincent L. Chiang

Source :

RBID : pubmed:15994906

Descripteurs français

English descriptors

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that can play crucial regulatory roles in eukaryotes by targeting mRNAs for silencing. To test whether miRNAs play roles in the regulation of wood development in tree species, we isolated small RNAs from the developing xylem of Populus trichocarpa stems and cloned 22 miRNAs. They are the founding members of 21 miRNA gene families for 48 miRNA sequences, represented by 98 loci in the Populus genome. A majority of these miRNAs were predicted to target developmental- and stress/defense-related genes and possible functions associated with the biosynthesis of cell wall metabolites. Of the 21 P. trichocarpa miRNA families, 11 have sequence conservation in Arabidopsis thaliana but exhibited species-specific developmental expression patterns, suggesting that even conserved miRNAs may have different regulatory roles in different species. Most unexpectedly, the remaining 10 miRNAs, for which 17 predicted targets were experimentally validated in vivo, are absent from the Arabidopsis genome, suggesting possible roles in tree-specific processes. In fact, the expression of a majority of the cloned miRNAs was upregulated or downregulated in woody stems in a manner consistent with tree-specific corrective growth against tension and compression stresses, two constant mechanical loads in trees. Our results show that plant miRNAs can be induced by mechanical stress and may function in one of the most critical defense systems for structural and mechanical fitness.

DOI: 10.1105/tpc.105.033456
PubMed: 15994906
PubMed Central: PMC1182482


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis.</title>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695</wicri:regionArea>
<wicri:noRegion>North Carolina 27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
</author>
<author>
<name sortKey="Shi, Rui" sort="Shi, Rui" uniqKey="Shi R" first="Rui" last="Shi">Rui Shi</name>
</author>
<author>
<name sortKey="Clark, Catherine" sort="Clark, Catherine" uniqKey="Clark C" first="Catherine" last="Clark">Catherine Clark</name>
</author>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15994906</idno>
<idno type="pmid">15994906</idno>
<idno type="doi">10.1105/tpc.105.033456</idno>
<idno type="pmc">PMC1182482</idno>
<idno type="wicri:Area/Main/Corpus">004011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004011</idno>
<idno type="wicri:Area/Main/Curation">004011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004011</idno>
<idno type="wicri:Area/Main/Exploration">004011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis.</title>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695</wicri:regionArea>
<wicri:noRegion>North Carolina 27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
</author>
<author>
<name sortKey="Shi, Rui" sort="Shi, Rui" uniqKey="Shi R" first="Rui" last="Shi">Rui Shi</name>
</author>
<author>
<name sortKey="Clark, Catherine" sort="Clark, Catherine" uniqKey="Clark C" first="Catherine" last="Clark">Catherine Clark</name>
</author>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="ISSN">1040-4651</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>MicroRNAs (chemistry)</term>
<term>MicroRNAs (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Stems (genetics)</term>
<term>Populus (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>Species Specificity (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Arabidopsis (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Tiges de plante (génétique)</term>
<term>Transcription génétique (MeSH)</term>
<term>microARN (composition chimique)</term>
<term>microARN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>MicroRNAs</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Arabidopsis</term>
<term>Populus</term>
<term>Tiges de plante</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Species Specificity</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">MicroRNAs (miRNAs) are small, noncoding RNAs that can play crucial regulatory roles in eukaryotes by targeting mRNAs for silencing. To test whether miRNAs play roles in the regulation of wood development in tree species, we isolated small RNAs from the developing xylem of Populus trichocarpa stems and cloned 22 miRNAs. They are the founding members of 21 miRNA gene families for 48 miRNA sequences, represented by 98 loci in the Populus genome. A majority of these miRNAs were predicted to target developmental- and stress/defense-related genes and possible functions associated with the biosynthesis of cell wall metabolites. Of the 21 P. trichocarpa miRNA families, 11 have sequence conservation in Arabidopsis thaliana but exhibited species-specific developmental expression patterns, suggesting that even conserved miRNAs may have different regulatory roles in different species. Most unexpectedly, the remaining 10 miRNAs, for which 17 predicted targets were experimentally validated in vivo, are absent from the Arabidopsis genome, suggesting possible roles in tree-specific processes. In fact, the expression of a majority of the cloned miRNAs was upregulated or downregulated in woody stems in a manner consistent with tree-specific corrective growth against tension and compression stresses, two constant mechanical loads in trees. Our results show that plant miRNAs can be induced by mechanical stress and may function in one of the most critical defense systems for structural and mechanical fitness.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15994906</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>11</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1040-4651</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>17</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2005</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>2186-203</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>MicroRNAs (miRNAs) are small, noncoding RNAs that can play crucial regulatory roles in eukaryotes by targeting mRNAs for silencing. To test whether miRNAs play roles in the regulation of wood development in tree species, we isolated small RNAs from the developing xylem of Populus trichocarpa stems and cloned 22 miRNAs. They are the founding members of 21 miRNA gene families for 48 miRNA sequences, represented by 98 loci in the Populus genome. A majority of these miRNAs were predicted to target developmental- and stress/defense-related genes and possible functions associated with the biosynthesis of cell wall metabolites. Of the 21 P. trichocarpa miRNA families, 11 have sequence conservation in Arabidopsis thaliana but exhibited species-specific developmental expression patterns, suggesting that even conserved miRNAs may have different regulatory roles in different species. Most unexpectedly, the remaining 10 miRNAs, for which 17 predicted targets were experimentally validated in vivo, are absent from the Arabidopsis genome, suggesting possible roles in tree-specific processes. In fact, the expression of a majority of the cloned miRNAs was upregulated or downregulated in woody stems in a manner consistent with tree-specific corrective growth against tension and compression stresses, two constant mechanical loads in trees. Our results show that plant miRNAs can be induced by mechanical stress and may function in one of the most critical defense systems for structural and mechanical fitness.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shanfa</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Ying-Hsuan</ForeName>
<Initials>YH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clark</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Laigeng</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>07</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
<ArticleId IdType="pii">tpc.105.033456</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.105.033456</ArticleId>
<ArticleId IdType="pmc">PMC1182482</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2004 Sep 15;18(18):2237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Oct 14;13(20):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 16;303(5656):363-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 18;301(5631):336-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 3;293(5531):834-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11452083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2089-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1730-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 20;297(5589):2053-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 1;18(19):2368-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 30;12(9):735-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12007417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):307-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Sep;7(9):1915-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Sep;130(1):234-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1973 Feb 16;179(4074):647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17774092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Oct 26;294(5543):858-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11679671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1605-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Jan 1;17(1):49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2002;71:817-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):495-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Feb 22;15(4):303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 May 26;101(5):555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Feb;25(2):46-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Jul;131(14):3357-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Aug 18;23(16):3356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15282547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1997 Dec;13(12):497-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9433140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Mar 4;428(6978):84-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14999285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 23;110(4):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2003 Feb;4(2):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 2;21(17):4663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 May;2(5):E104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Apr 29;13(9):784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12725739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):485-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Mar 4;428(6978):81-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14999284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 15;19(22):6150-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jun 22;14(12):1035-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15202996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Jan;3(1):e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15660154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(9):R65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jun 18;14(6):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Dec 1;14(23):3024-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Feb 17;14(4):346-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Jan;15(1):78-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 15;17(8):991-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Sep 3;12(17):1484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12225663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Oct 8;16(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(21):e171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15576678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 18;425(6955):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12931144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Feb;8(1):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):709-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2022-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Sep;131(17):4311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Mar 1;4(3):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Aug;10(8):1174-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 May;11(5):1253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12769849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Aug 9;86(3):423-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jun;9(6):841-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9212461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Jan 15;15(2):188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157775</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Clark, Catherine" sort="Clark, Catherine" uniqKey="Clark C" first="Catherine" last="Clark">Catherine Clark</name>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
<name sortKey="Shi, Rui" sort="Shi, Rui" uniqKey="Shi R" first="Rui" last="Shi">Rui Shi</name>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003F85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15994906
   |texte=   Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15994906" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020